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Abstract

The Novel Category Discovery problem aims to cluster an
unlabeled set with the help of a labeled set consisting of dis-
joint but related classes. However, existing models treat class
names as discrete one-hot labels and ignore the semantic un-
derstanding of these classes. In this paper, we propose a new
setting named Semantic-guided Novel Category Discovery
(SNCD), which requires the model to not only cluster the un-
labeled images but also semantically recognize these images
based on a set of their class names. The first challenge we
confront pertains to effectively leveraging the class names of
unlabeled images, given the inherent gap between the visual
and linguistic domains. To address this issue, we incorporate
a semantic-aware recognition mechanism. This is achieved
by constructing dynamic class-wise visual prototypes as well
as a semantic similarity matrix that enables the projection of
visual features into the semantic space. The second challenge
originates from the granularity disparity between the classi-
fication and clustering tasks. To deal with this, we develop a
semantic-aware clustering process to facilitate the exchange
of knowledge between the two tasks. Through extensive ex-
periments, we demonstrate the mutual benefits of the recog-
nition and clustering tasks, which can be jointly optimized.
Experimental results on multiple datasets confirm the effec-
tiveness of our proposed method. Our code is available at
https://github.com/wang-weishuai/Semantic- guided-NCD.

Introduction

Deep neural networks have surpassed human performance
in various computer vision tasks. However, most traditional
works focus on a closed-set setting, assuming training and
testing data share the same class set, which results in limited
generalization ability when the deep model is deployed in
the wild. To address this limitation, Novel Category Discov-
ery (NCD) (Hsu, Lv, and Kira 2018; Hsu et al. 2019; Han,
Vedaldi, and Zisserman 2019; Han et al. 2020; Fini et al.
2021) attempts to train a network to cluster instances from
unlabeled data, by utilizing labeled instances from a disjoint
set of classes. The primary motivation behind this approach
is to leverage the available supervision from the labeled set
to learn powerful image representations that can be applied
to cluster unlabeled instances.
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Figure 1: (a) Traditional NCD approaches perform class-
agnostic clustering on unlabeled data, whose clustering re-
sults are homogeneous in distribution. (b) Our proposed ap-
proach, with a set of class names of unlabeled data as the
only additive input, could get reasonable clustering results
along with cluster categories. Moreover, the distribution of
clusters is semantically related, meaning that clusters with
closer semantic relations are more likely to be spatially prox-
imate.

However, with the innate ability to comprehend the se-
mantics of various types of instances, the human cognitive
system excels not only in clustering instances that we have
never seen before but also in associating them with previ-
ously known concepts (Tenenbaum et al. 2011). This re-
markable capability empowers us to establish connections
even when confronted with novel situations. When intro-
duced to a new concept like a lynx, our brain might come
up with other feline creatures such as domestic cats or larger
relatives like tigers and lions. This innate ability to form
associations with existing knowledge enables us to rapidly
comprehend and recognize novel concepts like the lynx.

Motivated by this, we propose a novel Semantic-guided
Novel Category Discovery (SNCD) setting, where an ad-



ditional set of class names for unlabeled images is avail-
able. This novel setting facilitates the exploration of seman-
tic similarities across diverse classes and greatly assists in
the clustering process for unlabeled categories. As shown in
Fig. 1!, by utilizing the set of names of unlabeled classes as
the sole additional information, our model can acquire more
reasonable semantic-aware clustering results rather than ho-
mogeneous one. Moreover, unlike previous NCD methods,
our method gains the ability to semantically recognize each
cluster by leveraging the pool of class names from unlabeled
data as the supplementary information.

In the proposed SNCD setting, we encounter two major
challenges that need to be addressed. The first challenge re-
lates to the cross-modal gap between the visual and linguis-
tic domains. Since the high-dimensional characteristics of
visual features pose a hurdle in extending the visual space
to the unlabeled classes, leveraging the natural generaliz-
ability of the linguistic domain has become a promising
strategy. However, the intrinsic gap between two modali-
ties makes it difficult to incorporate the semantic informa-
tion of class names for recognizing unlabeled classes. The
second challenge originates from the granularity difference
between the classification and clustering task. Specifically,
while the classification task requires sample-wise recogni-
tion based on the given class names, the clustering task
merely requires to output a predefined number of clusters
without knowing the semantics of unlabeled classes. As a
result, it’s non-trivial to optimize the two tasks simultane-
ously and make them complement each other. Besides, tack-
ling the tasks of classification and clustering separately can
result in sub-optimal outcomes.

To address the first challenge, we incorporate language
priors derived from the linguistic domain along with visual-
aware similarities, as shown in the classification branch of
Fig. 2 shaded by blue. Specifically, we first acquire visual-
aware classification scores through class-wise visual pro-
totypes. Then, to leverage the relevance between different
classes for better generalizability, we incorporate a semantic
similarity matrix to facilitate the model to make semantic-
aware predictions for both seen and unseen classes.

The second challenge entails developing a semantic-
aware clustering process, where we incorporate linguis-
tic knowledge from the classification branch into the clus-
tering algorithm. As shown in Fig. 2, our objective is to
merge the knowledge from the semantic-aware classification
branch (shaded by blue) and the semantic-agnostic cluster-
ing branch (shaded by green) of our model to foster knowl-
edge complementation in-between. To accomplish this, we
first generate pseudo labels for the clusters predicted by the
clustering branch, as presented in the Algorithm 1. Then we
employ mutual information maximization between the clas-
sification score and clustering score to strengthen the collab-
oration between these two tasks.

!The number after every clustering is the variance of each clus-
ter. The smaller this number is, the better the clustering perfor-
mance is. Compared to the NCD approach, we could largely shrink
the variance in every corresponding cluster, making the cluster
more tight and trustworthy.

To summarize, our contributions can be outlined as fol-
lows: 1) We propose Semantic-guided Novel Category Dis-
covery, a practical enhancement to the NCD setting that en-
ables recognition of unlabeled data. 2) We design a dynamic
class-wise visual prototype and a semantic similarity ma-
trix to bridge the gap between visual and linguistic domains.
3) We propose a pseudo label generation method and mu-
tual information maximization technique, which leverages
the complementary knowledge from both the classification
and clustering tasks, allowing for the concurrent optimiza-
tion of both tasks. 4) Our approach achieves state-of-the-art
performance on various existing benchmarks.

Related Work
Novel Category Discovery

Novel category discovery (NCD) aims to cluster instances in
unlabeled data, by exploiting prior knowledge from known
classes. NCD lies in transferring knowledge from labeled
set to unlabeled set(Han et al. 2020, 2021a; Zhao and
Han 2021; Zhong et al. 2021b). The task of NCD requires
strong semantic similarity between labeled and unlabeled
classes in order to group new instances. RS (Han et al.
2020, 2021a) generates pair-wise pseudo-labels by ranking-
statistics. Zhao and Han (Zhao and Han 2021) further im-
proves this method by utilizing local part-level informa-
tion. NCL (Zhong et al. 2021a) and Jia (Jia et al. 2021)
use contrastive learning to learn discriminative representa-
tions. UNO (Fini et al. 2021) proposes a unified training ob-
jective based on self-labeling. Joseph (Joseph et al. 2022)
design a spacing loss to enforce separability in the latent
space. ComEx (Yang et al. 2022) divides and conquers NCD
with two groups of compositional experts. GCD (Vaze et al.
2022) proposes a more practical setting where unlabeled im-
ages may come from labeled classes or novel ones. However,
all the methods and tasks outlined above treat image classes
as discrete one-hot labels. In other words, semantic informa-
tion of labeled and unlabeled categories, which could pro-
vide crucial inter-category cues for recognition or clustering,
is overlooked in existing settings. Considering the above, we
propose a new SNCD setup: given the set of class names for
unlabeled images, the model is able to not only effectively
cluster instances belonging to novel classes, but also assign a
meaningful, semantic class name to every unlabeled image.

Zero-Shot Learning

Zero-shot learning (ZSL) aims to classify unlabeled classes
out of the training set. In other words, ZSL aims to transfer
the model from labeled to unlabeled classes. During train-
ing, the model is provided with objects or concepts along
with their associated attributes. Recent works have achieved
good performance on this task(Goodfellow et al. 2014; Ar-
jovsky, Chintala, and Bottou 2017; Mishra et al. 2018; Chen
et al. 2018; Schonfeld et al. 2019; Yu et al. 2020). However,
the training process of ZSL is costly and requires a lot of se-
mantic information as supervision, e.g., class attributes. Our
classification branch can be seen as a simple but effective
zero-shot model, which uses only class names we can easily
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Figure 2: Overview of our approach for Semantic-guided Novel Category Discovery. In the classification branch, the visual
feature z first engages with the class-specific Visual Prototype F', producing a visual-aware classification score s. The Semantic
Similarity Matrix M is then employed to facilitate the infusion of semantic knowledge into s. Consequently, a refined semantic-
aware classification score labeled as p is obtained on (C; + C,,) classes. The Visual Prototype is dynamically updated during
training. In the clustering branch, we use (Zhang et al. 2022) based clustering module to get the cluster prediction g. To jointly
optimize classification and clustering tasks, we propose to leverage the intra-cluster structure of the clustering results to gen-
erate reliable pseudo labels for unlabeled classes, providing high-quality candidates to update the class-wise visual prototype.
Besides, we propose to maximize the mutual information of the predictions between the classification and clustering tasks.

get access to and achieves promising zero-shot classification
results.

To highlight the uniqueness of our proposed new task
SNCD, we summarize the differences in these tasks from
the perspective of the information required during the train-
ing and testing phase. As shown in Figure 3, we can observe
that SNCD, NCD, and ZSL tasks differ in terms of the in-
formation acquired during the training phase and the outputs
during the testing phase. SNCD requires more information
during the training phase compared to NCD and ZSL. How-
ever, during the testing phase, SNCD provides a combina-
tion of traditional NCD and ZSL outputs. NCD lacks the
ability to recognize unlabeled images, while ZSL is not ca-
pable of clustering unlabeled images if the corresponding
class names are not provided. SNCD can obtain both clus-
tering and classification results, greatly enhancing the gen-
eralization ability of the task.

Method

As shown in Fig. 2, we adopt a dual-branch architecture,
consisting of the classification branch F and the cluster-
ing branch F. The classification branch performs semantic-
aware recognition, bridging the gap between the visual and
linguistic domains. The clustering branch outputs the class-
agnostic clustering results for the given images. We utilize
mutual information between the outputs of two branches
to facilitate the cooperation and complementation between
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Figure 3: Comparison among different ‘novel class under-
standing’ task settings.

them. In this section, we first introduce preliminaries, in-
cluding the dataset setup and the clustering module. Then we
discuss the incorporation of language priors with visual sim-
ilarities to facilitate semantic-aware recognition. Besides,
we discuss how the classification and clustering tasks inter-
act with each other. Finally, we present the overall objective
function of our method.

Preliminary

Problem Formulation. The training data is split into
two different sets: a labeled set denoted as D; =



{(z1,v1), ., (xn,yn)} and an unlabeled set denoted as
D, = {x1, ...,z }. Each z; represents an image, and each
y; signifies its respective label. We assume that there’re C)
categories in D; and C,, categories in D,, and these cat-
egories are disjoint but semantically connected. Different
from the NCD setting, in our SNCD setting, even though
the individual labels are not known for the unlabeled data,
we have prior knowledge of the set of possible class names
for them.

Unlabeled Data Clustering. We adopt the clustering mod-
ule in (Zhang et al. 2022)(denoted as Fi), which contains a
visual encoder (shared with classification branch), a labeled
head for labeled images classification, an unlabeled head for
unlabeled images clustering and a mechanism to maximize
mutual information between these two heads. During train-
ing phase, an labeled image with its class name or an un-
labeled images is send to F, with an output g = Fg(x)
of C; + C', dimension referring the probability assigning to
each cluster, where « is the input image. Besides, we de-
note the overall loss for clustering module as Ly s¢e,r. More
details can be found in (Zhang et al. 2022).

Semantic-Aware Classification

To effectively identify semantic similarities between labeled
and unlabeled classes, we introduce a novel task that consists
of not only clustering the unlabeled images but also classi-
fying them. Our goal is to integrate language priors associ-
ated with visual features to improve generalization. Specifi-
cally, we propose a dynamic class-wise visual prototype and
a semantic-aware tuning mechanism for this integration.

As depicted in figure 2, the proposed classification branch
consists of two parts, the class-wise visual prototype F' and
Semantic Similarity Matrix M. Class-wise visual prototype
F contains C] features from the labeled set and C, features
from the unlabeled set. Given a visual feature z, we compute
its cosine similarity with F' to produce the visual classifica-
tion score s € R“1+C«_ Namely,

s=z'.F, ey

The mere visual similarities neglect the underlying relation-
ships of semantics in linguistics between the labeled and un-
labeled sets. Hence we further utilize the language priors
embedded in M to enhance generalizability for unlabeled
classes, where M;; represents the cosine similarity between
the word vectors of the i** category and the j*" category. By
supplementing these coefficients related to semantics, the fi-
nal prediction of an unlabeled image will take into account
its semantic similarity with the labeled class. Formally, the
semantic-aware classification score p is calculated as:

p=o(s-M), )

where o indicates the softmax function.

The semantic similarity matrix helps to revise some er-
roneous predictions in the visual-aware classification score
s. For example, as illustrated in Fig. 2, lion and horse be-
long to labeled classes, while lynx and zebra belong to unla-
beled classes. Consider a scenario where we aim to differen-
tiate between a lynx and a zebra in an image. The prediction

Szebra €rrONEOUsly SUrpasses Siyn.. To address this, we can
leverage the visual-aware classification score and the seman-
tic similarities among various classes as priors to revise the
final prediction t0 p.epra < Plynz-

Dynamic Visual Prototype Maintenance. The Class-wise
Visual Prototype F' contains a single prototype for each class
to capture the essential characteristics of each class. We ran-
domly select K samples for a specific class and calculate
their mean to represent the corresponding prototype. En-
abling dynamic updates for the visual prototypes can signifi-
cantly enhance the generalization performance of the model.
Our update strategy differs for the labeled and unlabeled
parts of the visual prototype.

For the labeled classes, the visual prototype is updated
straightforwardly thanks to the availability of ground truth
labels during the training process. Specifically, each train-
ing batch comprises images from various categories, includ-
ing both labeled and unlabeled ones. The features z of the
labeled images can be directly utilized to displace the cor-
responding old features in the visual prototype F' based on
their respective ground truth labels.

For the unlabeled classes, we employ a distinct update
strategy. We first assign pseudo labels to all samples be-
longing to unlabeled classes. Then for each unseen class, we
randomly select K samples from this pool and compute the
mean feature of them. These mean features are then assigned
to their respective slots within F'. The details of pseudo la-
beling will be elaborated in the following subsection.

Coordination between the Classification and
Clustering Tasks

As mentioned previously, handling classification and clus-
tering tasks separately may lead to sub-optimal outcomes,
such as homogeneous labeling results without reasoning,
and unreliable classification results due to the lack of su-
pervision for the unlabeled data. To mitigate these issues,
we propose to make the two branches collaborate with each
other, since the classification branch may offer noisy yet
valuable information for unlabeled classes while the clus-
tering branch excels at reliably dividing samples into clus-
ters(Fini et al. 2021) without comprehending the seman-
tics of each class. Specifically, we introduce two coopera-
tive mechanisms to jointly optimize the two branches: 1)
cluster-wise pseudo-label generation, and 2) mutual infor-
mation maximization.

Cluster-Wise Pseudo-Label Generation: To provide fea-
tures of unlabeled images with high confidence to visual
prototype, which in turn leads to a better classification re-
sult, we introduce a cluster-wise pseudo-label generation
process. The key objective of cluster-wise pseudo-label gen-
eration is to assign unique class labels to different clusters
using the semantic-aware predictions from the classification
branch. Specifically, in every training epoch, each image
is first forwarded to both the clustering and classification
branches, generating its predicted category name (based on
p) and clustering ID (based on g), respectively. To leverage
the semantic-aware classification results in the classification
branch, we propose to select anchor images with fop-K con-
fidence for each unlabeled class, as illustrated in the process



of Category-wise Top K Filtering in Fig. 2.

The cluster-wise Pseudo-label Generation procedure is
presented in Algorithm 1. Line 2 initializes a matrix S €
RE*C where S; ; aims to record the number of high-quality
samples belonging to the j** class assigned to i*”* cluster. In
lines 3-4, we obtain the clustering and classification results
by forwarding /N images through the clustering and classifi-
cation branches, respectively. In lines 5-7, we iterate through
all the classes and find top-K samples for each class to form
the matriX Giepmp. As illustrated in the part of Pseudo Label
Generator of figure 2, these anchor images may lie in dif-
ferent clusters from the clustering branch, especially at the
beginning of training. The different numbers of class-wise
anchor images in each cluster can be regarded as a pattern
to assign a specific class for each cluster, as shown in lines
8-12 of the Algorithm 1. Then, leveraging these class-wise
anchor patterns in multiple clusters, our goal is to find the
permutation of the rows of S to maximize the trace of it.
To achieve this, we utilize the Hungarian algorithm to match
C,, clusters with C,, unlabeled categories. The resulting out-
put @ consists of matched pairs, each containing a cluster
id and its corresponding pseudo-label. Finally, we employ
the matching results to associate the cluster id in G with the
pseudo-label. The intuition is that the more high-confidence
anchor images from a class are selected in a cluster, the more
confident it is to assign the cluster to that class.

Till now, we could obtain high-quality cluster-wise

pseudo labels by utilizing both the intra-cluster structure of
clustering results and the semantic-aware confidence scores.
We randomly select samples with pseudo labels and employ
them to update the prototype for each unseen class, as de-
tailed in the preceding subsection.
Mutual Information Maximization: To strengthen the col-
laboration and facilitate knowledge transfer between the
classification and clustering tasks, we propose to maximize
the mutual information between the class prediction prob-
abilities obtained from the clustering branch and those ob-
tained from the classification branch:

1 B
=B Zg(wb) -p(z)" 3
Cz+C Cz+C
I(g.p)= ) Z P; log Zsl @
=1

where B is the batch size, g is the outputs of the clustering
branch, p is the predicted probabilities in the classification
branch and P represents the joint probability distribution of
the output logits of clustering and classification branches.
LMI = —[(g,p)) is minimized to maximize the mutual
information between the classification and clustering tasks.

The classification branch may produce unreliable classi-
fication results due to the lack of supervision for the unla-
beled data. However, compared with the predictions from
the classification branch, the clustering branch provides a
more reliable understanding regard to class relationships.
Hence we maximize mutual information between the out-
put of the clustering branch and the classification branch to
merge the knowledge of the two branches.

Algorithm 1: Cluster-wise Pseudo-label Generation

Input N Image features I € RV *?, a hyperparameter K

: for epoch in range(TotalEpochs) do

2. S =zeros(C,O)

3:  G=Fg(I)e RNXC {forward via clustering Branch}

4 P=Fg(I)e RNV*C {forward via classification
Branch}

: for i in range(C') do {check every category}
6: indice = argmax TopK P[:,i] {Top K Image in-
dices most likely belonging to the category i}

7: Gtemp = Glindice,:] {Gemp € REXCY

8: for j in range(K) do

9: clusterID = argmax Giempls,:]

10: S[clusterID,i] += 1

11: end for

12:  end for

13: @ = Hungarian-Matching(S) {find the matching be-
tween the cluster id and pseudo label}

14:  PseudoLabel = Label-Assignment(G, Q) {utilize
the matching results to generate pseudo labels for the
clustering results}

15: end for

Overall Objective

During training, our model jointly performs the classifica-
tion and clustering tasks on labeled and unlabeled data. The
network is optimized by the following objective:

L = Lcluster + aLiWI (5)

where « is a hyper-parameter to balance the loss terms. Dur-
ing inference, we use argmax(g) to specify the cluster id,
and argmax(p) to infer the class for unlabeled data.

Experiments

This section presents a comprehensive evaluation of our
method on three NCD benchmarks. We focus on both clus-
tering and classification accuracy to showcase our method’s
superiority over existing methods. We also conduct ablation
study to explore the impact of individual modules.

Experimental Setup

Datasets. We evaluate our method on three benchmark NCD
datasets: CIFAR10, CIFAR100 (Krizhevsky et al. 2009), and
ImageNet (Deng et al. 2009). We follow the dataset splits of
various settings in (Fini et al. 2021).

Metrics. We employ two primary metrics to evaluate our
method’s performance. For classification tasks, we utilize
classification accuracy as the metric. For the clustering task,
we adhere to the metric introduced in (Fini et al. 2021).
Protocol. We assess our method under both task-aware
and task-agnostic circumstances. In the task-aware proto-
col, only novel(unlabeled) categories are evaluated, and it
is known whether an image belongs to a labeled or unla-
beled class. The task-agnostic protocol, proposed by Fini
(Fini et al. 2021), simulates real-world conditions where dis-
tinguishing between labeled and unlabeled categories is nec-



CIFAR10 CIFAR100-20 CIFAR100-50 ImageNet
Method Classification Clusering Classification Clusering Classification Clusering Classification Clusering
k-means - 72.5 - 56.3 - 28.3 - 71.9
KCL - 72.3 - 42.1 - - - 73.8
MCL - 70.9 - 21.5 - - - 74.4
DTC - 88.7 - 67.3 - 359 - 78.3
RS - 90.4 - 73.2 - 39.2 - 82.5
RS+ - 91.7 - 75.2 - 44.1 - 82.5
UNO - 96.1 - 84.5 - 52.8 - 89.2
UNOvV2 - 93.6 - 90.2 - 61.0 - 91.1
Ours 40.1 93.8 57.8 93.7 21.6 62.2 26.5 92.5

Table 1: Comparison with state-of-the-art methods on CIFAR-10, CIFAR-100, and ImageNet on classification and clustering

>

metrics, using task-aware evaluation protocol. ‘-

means the methods treat class names as discrete one-hot labels, lacking

semantic understanding of classes and therefore cannot perform the classification task.

CIFAR10 CIFAR100-20 CIFAR100-50
Method Labeled Unlabeled All Labeled Unlabeled All Labeled Unlabeled All
KCL 79.4 60.1 69.8 234 29.4 24.6 - - -
MCL 81.4 64.8 73.1 18.2 18.0 18.2 - - -
DTC 58.7 78.6 68.7 47.6 49.1 47.9 30.2 347 32.5
RS+ 90.6 88.8 89.7 71.2 56.8 68.3 69.7 40.9 55.3
UNO 93.5 93.3 934 73.2 72.7 73.1 71.5 50.6 61.0
UNOvV2 95.3 91.3 93.3 73.6 71.0 73.1 73.4 57.5 65.5
Ours 95.8 92.7 94.3 79.9 79.2 79.5 77.2 60.5 68.9

Table 2: Comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100 on both labeled and unlabeled classes, using

task-agnostic evaluation protocol.

Method CIFAR100-20
DEM (Zhang, Xiang, and Gong 2017) 19.8
f-CLSWGAN (Xian et al. 2018) 27.3
FREE (Chen et al. 2021) 35.6
CE-GZSL (Han et al. 2021b) 375
Ours 57.8

Table 3: Comparative results under ZSL settings.

essary. We can not know whether an image comes from la-
beled set or unlabeled set in advance at test time.
Implementation Details. Our experiments are built on
the UNO baseline (Fini et al. 2021), keeping the hyper-
parameters consistent. We reproduce the performance met-
rics reported in the original papers if available. The encoder
fo uses aResNet18 (He et al. 2016) pretrained on the labeled
data set for the classification task. The weight o for the mu-
tual information loss is set to 0.1. We choose K = 16 when
we generate pseudo labels for unlabeled classes and use
the Glove word vectors (Pennington, Socher, and Manning
2014) trained by Wikipedia2014 and Gigaword5 to supply
semantic information.

Comparison with Other Methods

This part compares state-of-the-art models and our model’s
ability to deal with the SNCD task. We compare our method

with k-means (MacQueen et al. 1967), KCL (Hsu, Lv, and
Kira 2018), MCL (Hsu et al. 2019), DTC (Han, Vedaldi, and
Zisserman 2019), RS, RS+ (Han et al. 2020), UNO (Fini
et al. 2021), UNOv2. As shown in Table 1, our model
achieves more significant performance gains on 80/20 split
than 50/50 split of CIFAR100, showing that given more con-
cepts/semantics, our model can better mine semantic simi-
larities between labeled classes and unlabeled classes. Con-
cretely, for the CIFAR100-20 split, our method achieves
nearly a 4.5% increase in clustering accuracy, while for Im-
ageNet, our approach surpasses the leading NCD method by
1%. Besides, unlike previous methods that treat classes as
discrete one-hot labels, our model is semantic-aware and can
perform classification task, achieving a promising zero-shot
classification result.

For the task-agnostic setting, Table 2 reveals the signif-
icant improvements our method brings to both labeled and
unlabeled sets. On the unlabeled set of CIFAR100-20, our
approach demonstrates a 9% performance boost when com-
pared to the leading method. Additionally, we achieve a
performance gain of 3% to 4% on both CIFAR100-20 and
CIFAR100-50 splits.

Furthermore, we compare the classification performance
of unlabeled classes between traditional zero-shot image
recognition methods and our semantic-guided classification
branch using the CIFAR100-20 split. To ensure fairness, the



zero-shot learning methods are implemented using the con-
ventional ZSL setting, employing the same feature encoder
and word vectors as our framework. Our method surpasses
all the ZSL baselines mentioned, as demonstrated in Ta-
ble 3. This highlights the efficacy of our approach and show-
cases its proficiency in uncovering semantic similarities be-
tween known and unknown classes while demonstrating a
profound comprehension of unlabeled classes.

Ablation Study

Network Component: To validate the effectiveness of our
proposed components, we conduct an ablation study focus-
ing on both classification and clustering accuracy on the
CIFAR100-20 split, as shown in Table 4. We observe: (1)
Note that our model without F*“"@b¢! has to incorporate the
semantic similarity matrix M to classify images belonging
to unseen classes. Comparing the results presented in lines
1 and 2, we can find an 18.3% and a 1.4% improvement
in classification and clustering accuracy, respectively. This
proves that mutual information between the classification
and clustering tasks leverages the underlying data correla-
tions to enhance the overall performance. (2) When compar-
ing the results presented in lines 2 and 4, it becomes evi-
dent that incorporating unlabeled class samples (Fuabel)
leads to a 5.5% enhancement in classification performance.
This is because some semantic information of the unlabeled
classes cannot be well captured solely through the represen-
tation of labeled classes. By enabling the integration of im-
age features originating from the unlabeled classes into the
class-wise visual prototype F', a more comprehensive repre-
sentation of these unlabeled images, along with their asso-
ciated semantic labels, can be achieved. (3) By comparing
the outcomes observed in lines 3 and 4, we find that project-
ing the visual similarity s into the semantic space through
the Semantic Similarity Matrix M yields a noteworthy en-
hancement, which proves that the capacity for generalization
within the semantic space surpasses that of the visual space.

CIFAR100-20

Classification  Clustering

Flabel Funlabel M LiVII

v X v X 34.0 92.4
v X 4 v 523 93.0
v v X 4 50.8 92.7
v v v v 57.8 93.7

Table 4: Ablation study on the network component.

Implementation of Cross-Task Knowledge Transfer: We
conduct ablation experiments on different loss functions to
enhance the effectiveness of cross-task knowledge transfer.
As shown in Table 5, we find that using L2-distance to super-
vise the correlation between the output of two tasks leads to
inferior performance. This is because clustering score rep-
resents the cluster id, which does not contain information
related to the class name. In contrast, mutual information is
capable of quantifying the relationship between two random
variables that are sampled concurrently, making it a more
powerful approach in the context of joint optimization. It

enables a soft knowledge transfer mechanism that ensures
consistency without strictly enforcing identical predictions.

CIFAR100-20

Method

Classification  Clustering
Mutual Information 57.8 93.7
L2-distance 30.2 88.6

Table 5: Ablation on the implementation of cross-task
knowledge transfer.

Visualization Analysis

To evaluate the ability of our proposed clustering module to
learn from the recognition task, we visualize the logits g for
both UNO and our method, as shown in figure 4. In the case
of UNO, it erroneously identifies cats and dogs as the closest
neighbors of trucks, showing a homogeneous distribution.
This result is unreasonable as it fails to consider the semantic
similarity between these categories. However, our method
effectively addresses this issue by appropriately clustering
trucks closer to other vehicle categories such as airplanes,
cars, and ships. This pattern demonstrates the effectiveness
of our approach in grouping images based on their semantic
similarities, resulting in more logical and accurate clustering
outcomes.

(b) our SNCD

Figure 4: t-SNE visualization for all classes on CIFAR10 for
UNO and our method.

Conclusion

In this paper, we propose the task of Semantic-guided Novel
Category Discovery. Our objective is to develop a model that
can effectively identify semantic similarities among various
classes given a set of class names about unlabeled images.
We design a dynamic visual prototype and a semantic-aware
tuning strategy for interaction between visual features and
semantic labels. In addition, we develop a semantic-aware
clustering process to transfer knowledge between the classi-
fication and clustering branches. We also show that the clus-
tering and classification modules can improve each other’s
performance. Extensive experiments on three widely used
datasets prove the effectiveness of our proposed method.
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